IMPLIKASI, BIIMPLIKASI, KONVERS, INVERS DAN KONTRAPOSISI


A. IMPLIKASI
1. Definisi
Implikasi atau pernyataan bersyarat atau kondisional adalah pernyataan majemuk yang disusun dari dua buah pernyataan p dan q dalam bentuk jika p maka q.
Bagian “jika p” dinamakan alasan atau sebab dan bagian “maka q” dinamakan kesimpulan atau akibat.
2. Notasi
Implikasi “jika p maka q” dapat ditulis dengan lambang sebagai berikut.
Dibaca :
a. Jika p maka q
b. p berimplikasi q
c. p hanya jika q
d. q jika p
e. q asal saja p
Dalam implikasi p → q, p disebut anteseden (hipotesis) dan q disebut konsekuen (konklusi).
3. Tabel Kebenaran
“definisi : implikasi p → q bernilai benar jika anteseden salah atau konsekuen benar”.
p q p → q
B B B
B S S
S B B
S S B

4. Contoh
Tentukan nilai kebenaran setiap implikasi berikut.
a. jika 3 + 2 = 5, maka 5 adalah bilangan prima.
b. jika 9 adalah bilangan genap, maka Surabaya ibukota jawa timur.
Jawab :
a. jika 3 + 2 = 5, maka 5 adalah bilangan prima
B B
Implikasi ini bernilai benar, karena alasan benar dan kesimpulan benar.
b. jika 9 adalah bilangan genap, maka Surabaya ibukota jawa timur
S B
Implikasi ini bernilai benar, karena alasan salah dan kesimpulan benar.

B. BIIMPLIKASI
1. Definisi
Biimplikasi atau implikasi dwi arah adalah pernyataan majemuk yang disusun dari dua buah pernyataan p dan q dalam bentuk p jika dan hanya jika q.
2. Notasi
Biimplikasi “p jika dan hanya jika q” dapat ditulis dengan lambang sebagai berikut.
Dibaca :
a. p jika dan hanya jika q
b. p syarat perlu dan cukup bagi q
c. q syarat perlu dan cukup bagi p
3. Tabel Kebenaran
“definisi : pernyataan bikondisional bernilai benar hanya jika komponennya bernilai sama”.
p q p ↔ q
B B B
B S S
S B S
S S B

4. Contoh
Tentukan nilai kebenaran setiap implikasi berikut.
a. (64)⅓ = 4, jika dan hanya 64log 4 = ⅓
b. x2 – 4x + 3 = 0 mempunyai akar real jika dan hanya jika x2 – 4x = 0 tidak mempunyai akar real.
Jawab :
a. (64)⅓ = 4, jika dan hanya jika 64log 4 = ⅓
B B
Merupakan biimplikasi yang benar.
b. x2 – 4x + 3 = 0 mempunyai akar real jika dan hanya jika x2 – 4x = 0 tidak mempunyai akar real.
B S
Merupakan biimplikasi yang bernilai salah.

C. KONVERS,INVERS DAN KONTRAPOSISI
1. Definisi
“Konvers dari implikasi p → q adalah q → p”
“Invers dari implikasi p → q adalah ~p → ~q”
“Kontraposisi dari implikasi p → q adalah ~q → ~p”
2. Hubungan antara implikasi, konvers, invers dan kontraposisi

3. Tabel Kebenaran

p q p → q
Implikasi q → p
Konvers ~ p → ~ q
Invers ~ q → ~ p
Kontraposisi
B B B B B B
B S S B B S
S B B S S B
S S B B B B

4. Contoh
Tentukan konvers, invers dan kontraposisi dari pernyataan implikasi berikut.
a. jika harga naik, maka permintaan turun
b. jika x = 5, maka x2 = 25
Jawab :
a. jika harga naik, maka permintaan turun
– Konversnya : jika permintaan turun, maka harga naik
– Inversnya : jika harga tidak naik, maka permintaan tidak turun
– Kontraposisi : jika permintaan tidak turun,maka harga tidak naik.
b. jika x = 5, maka x2 = 25
– Konversnya : jika x2 = 25, maka x = 5
– Inversnya : jika x ≠ 5, maka x2 ≠ 25
– Kontraposisi : jika x2 ≠ 25 ,maka x ≠ 5.

About these ads

6 pemikiran pada “IMPLIKASI, BIIMPLIKASI, KONVERS, INVERS DAN KONTRAPOSISI

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s